DETERMINATION OF BOUNDARY THERMAL REGIME
FROM THE SOLUTION OF AN INVERSE
HEAT-CONDUCTION PROBLEM

0. M, Alifanov UDC 536,12

We consider control schemes for the solution of a one-dimensional inverse heat-con-
duction problem in a region with moving boundaries. We investigate the computational
aspects of the construction of effective algorithms,

Principles of Solution of the Inverse Problem. We consider the general formulation of a one-dimen-
sional inverse problem of type I for a heat-conduction equation with constant coefficients. We seek heat
fluxes or temperatures on two moving boundaries of the body according to known temperature dependencies
at two interior points. The coordinates of these points can vary in time. Their laws of motion X, (7) and
Xs (1) and also the laws of motion of the external boundaries X; (v) and X, (7) are known, and are defined by
continuous differential functions. Below, for brevity of the discussion, we will consider mainly the prob-
lem of determining the heat fluxes. The solution of the similar problem of the temperatures on the sur-
faces can be obtained (following the considerations given below) in terms of the double-layer thermal
potentials. If it is required to establish simultaneously the heat fluxes and the temperatures on the boun-
daries, then based on the heat fluxes that have been obtained, solving the direct heat-conduction problem,
we can find the boundary temperatures. Finally, we assume the initial temperature distribution to be
equal to zero, which, however, does not leadto any loss in generality of the formulation of the problem,
since, we can always first reduce the initial condition to zero.

Thus, we have the following problem:
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where £,(7), f(v) areknown functiohs, andq(T), g4(7)are unknown functions.

T
As 6 we can use the model temperature, defined by the Kirchhoff transformation § =1/», g A(T)dT.
b
We introduce info the discussion the single-layer potentials for the heat-conduction equation. Then
the function ¢ (x, 7) can be represented in the form
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where vy, v; are known functions, and K(x,'Xj €); T, &) = 1/2Va/7(1=t) _exb - (x—-Xj (&) )2/4a(7—£) 1.

Taking into account the jump conditions for the derivatives of the thermal potentials, we write ex~
pressions for determining the two heat fluxes:
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The densities of the thermal potentials should satisfy the following Volterra integral equation of the
first kind;
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where we have introduced the two-component vector-functions
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and the matrix of the kernels
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The present problem is incorrect (unstable against small perturbations in the right side); therefore,
we must seek its solution on the basis of Tikhonov's regularization method [1].

We construct a regularization function in the form
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The solution of the problem of the minimization of the functional (4) with respect to v;(7) and v, (1)
can be reduced to the solution of the two corresponding Euler equations, depending on the regularization
parameter or. By appropriate selection of @, we can achieve stability and the necessary accuracy of the
solution. Thus, the general methadology of regularization of the inverse heat-conduction problem with
two unknown boundary conditions does not differ principally from the case of a single unknown condition
[2,3]). However, in the computational plan, the problem becomes more complex and laborious and we
therefore also consider other possible approaches {o its solution.

" If, above, for obtaining Eq. (3) we considered the region D{X;(1) = x = Xy(7), r> 0}, then we now
consider the two regions Dy {X;(7) = x = Xy(7), 7> 0} and Dy {X,(7) =x < X;3(7), 7> 0} with the common
boundary X, (1), on which the following coupling conditions are satisfied:
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Similarly we can consider the regioﬁs D, and Dg{X3(1) = x <X, (7), T > 0}, bordering on the boundary
X3(m).

The heat flux ¢,(7) is found from a solution of the direct heat-conduction problem in the region D,,
In this case we can use the double-layer thermal potentials 4]. In the present case, applying the approxi-
mation described in [5] for the integral terms (in the system of Volterra equations of the second kind,
written for the determination of the densities of the potentials), we succeed in reducing this problem to
the successive solution,for each step in time, of a system of two linear algebraic equations. As was shown
by numerical experiments, such a method proves to be very effective with respect to the accuracy of the
results obtained and the expenditure of calculation time.

It is necessary to obtain the unknown densities vy and »y, corresponding to the boundaries X, (7) and

X,(7) of region Dy from the solution of the following system of integral equations:
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Equation (5) is an equation of the first kind in 14 and vy; however, it can be reduced to an equation of
the second kind in »,. _
Following the method of Gol'mgren, used in [6], we multiply both sides of Eq. (5) by (z—'r)l/ 2 inte-
grate over T from 0 to z, reverse the order of integration in the integrals on the left side, and, finally,

differentiate the equation obtained with respect to z with subsequent replacement of z by 7. Omitting all
the calculations related to these transformations, we write the final result
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We note that in the derivation of (7) we have used thé agssumption of Holder continuity of the function
{5 (1) with exponent (1+8)/2 (0 < B <1).

The kernels Wl (¢, 7) have a weak singularity of the form [6]

“

WE 9 <ME—8 2, M>0,0<x<l,

which indicates the existence of the integrals on the left side of (7) and the possibility of representing them
in finite-difference form.

Thus, in the given formulation of the inverse heat-conduction problem it is necessary to regularize
the problem of the determination of the single unknown density vy(7).

We exclude the most typical (in practice, the solutions of inverse heat-conduction problems with con-
stant coefficients) case in which the points with known temperatures are not displaced during heating, i.e.,
Xa(1) = const, X3(7) = const. Then the problem (5), (6) reduces to a solution of the integral equation
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Equation (8) can be approximated in the form of the sum @aking account of the singularity of W;{¢, 7))
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where the p; are the weighting factors, which depend on the quadratic formula that is used.

Regularization of (9) according to the Tikhonov method leads to the equation

(A'A + aC) v, = A'F,
where C is a positive-definite symmetric matrix, the form of which is determined by the order of regular-
ization (see, e.g., (14) and (15) below).

The approach considered above is equivalent to the reduction of the inverse problem to a Cauchy prob
lem with conditions f,(7) and q,(7), assigned for x =X,(1}. A specific shortcoming of such a representa-
tion consists of the need to first calculate the heat flux q,(7). If the errors in the initial data f;(7) and f5(7)
can usually be assumed to be independent of each other, then, in the transition to the Cauchy problem, the
errors in the function g,(7), obtained from a solution of the direct heat-conduction problem, to a consider-
able extent, are determined by the errors in the assignment of f,(7). "Synchronization" of the errors in
f, and q, can worsen the accuracy of the solution of the inverse heat-conduction problem.

We now discuss a method of reducing the boundary thermal regimes q;(7) and q,(7) to the general for-
mulation (1), (2). It is based on two transformations, which enable us to formulate, instead of (1), (2), a
problem with fixed boundaries of the input data and fixed boundaries of the unknown functions., The first
transformation is a eonversion to the new input data §,(7) and 65(7) for some straight lines x, = const and
x; = const, which are obtained from a solution of the direct heat-conduction problem in the region D,. For
definiteness, we can assume, for example, x, = szax and x3 = X3pin. If the input functions are given at
fixed points, then naturally such a transformatlon is not requlred The second transformation is the final
conversion to the rectangular regions Di{0<x<x,, 7> 0} and Dy{x; = x = Xymax. 7> 0}, enclosing the
regions Dy and D; (D = Di, D; = D3)

We now solve the inverse problems of the determination of the fictitious temperatures 6¢; and 6,
corresponding to the boundaries x = 0 and x = X;max. This can be done sufficiently easily in terms of the
Duhamel integral with the use of the principle of superposition of solutions. For example, for 8¢ we have
the integral eguation

f%(&) Dl T8 g, (10)
a9 .

where
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3(x, 7—¢) is a solution of the first boundary-value problem in the region D; U D; for the condition of zero
temperature on one boundary and unity temperature on the other.

Thus, the considered transformation of the initial formulation of the problem allowed us to obtain
a fundamental integral equation (10) in a form such that its solution is completely confined within the limits
of the regularization schemes constructed in [2, 3].

The last step.in determining the unknown conditions on the boundaries X;(7) and X, (7) consists of solving
the direct heat-conduction problems, respectively, in D;' and Dy'. These problems do not present any
fundamental difficulties. Their method of solution can be based on the Duhamel principle or on the theory
of thermal potentials. -

The approaches analyzed above for the solution of the inverse heat-conduction problem in a homo-
geneous body can also be extended to multilayered bodies with thermal-conductivity coefficients that are
piecewise-constant over the coordinate.

Some Computational Aspects of the Regularization of the

Solutions of the Inverse Problems

In many cases, with the use of regularization schemes for solution of the inverse heat-conduction
problems, it becomes necessary to completely automate the process of selecting reasonable, i.e., optimal
in a certain sense, approximations to the unknown boundary functions (selection of the regularization para-
meter). The determination of the approximations from the condition of internal convergence of the regular-
ization solutions (the quasioptimal-parameter method [7]) usually requires a qualitative analysis of the ob-
tained results. In the present case we use certain a priori information on the expected solution and the
assumed character of the exact input function. Furthermore, as was noted in [3, 8], it is advisable to
use the quasioptimal-parameter method in combination with other methods for determining the optimal
approximations. All of this significantly hinders the automation of the process being considered. At the
same time, the criteria for selecting the regularization parameter, which are based onV. A, Morozov's
discrepancy principle [9, 10], allow us to construct an automatic search of the best approximations.

An effective algorithm for solving the given problem was proposed in [11]. We consider its applica-
tion to the solution of inverse heat~conduction problems in the formulation of [2]. It is required to find an
m-~-component vector u (heat flux, temperature, or density of the thermal potential on the boundary of the
body) from a solution of the following system of algebraic equations with lower triangular matrix:

m
Auzzq)7ui=fn, n=1,2 ...

=1

, m. (11)
The coefficients (p’il are determined as a function of the inverse problem being solved (for a semiin-
finite body and for a plate they are given in [3]).

In agreement with the regularization discrepancy principle for the condition of obtaining the unknown
solution with minimum Euclidean norm of the first differences, the problem (11) reduces to the solution of
the parametric system of linear algebraic equations

(B+ollu=g 12)
jointly with the condition for the selection of ¢
m n 1
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m; o is the regularization parameter;
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If we formulate a problem about the minimization of the norm of the second differences, then for the
natural boundary conditions u'' (0) =u'' (1) =u'"" (0) = u'" (Tyy) We have
1 —2 1
—2 5 —4 1
1 —4 6 -—41 ’

C— . . (15)

1 —4 6 —4 1
1| —4 5 —2
1 —2 1

o —

In [11] it was shown that if we replace the discrepancy equation ||Au,—f I|E = § by the equation
||Aua—-f| I®g_ =68, s =—1, and we consider the latter with respect to p = 1/a, then for its solution we
can apply Newton's method of tangents (owing to the convexity from below of the functions pS(1/p) = ||Ay /p
—f “SEm) . Furthermore, we determine that a high rate of convergence for the process of searching for
the roots exists for s = —1,

Thus, instead of (13), below, we will solve the equation

LI n 2)iy2 ‘
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We construct an iterational sequence based on the equation
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Having differentiated (12), we obtain a system for the determination of du;, /p/

l du ’
B -lc) Ly
( p J du (18)
The column vector b for the matrix C, determined by (14), has the form

by = — ¢y —ty +
by =y 1 —2u Uy, k=2,3, ..., m—]1,
— t
bm“_% Uy — U
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If the stabilizing term in Eq. (12) corresponds to the matrix (15), then
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by, = uy -+ 2u, — u,
by = 2u, — 5u, 4~ 4u; — u,,

b=~y g Sy — Uy Ay — Uy, k=3, 4, ..., m—2,
by = —thy_g -+ 4y — Sthy_, 2y
bm = Uy s+ Qum—l U

The process of approaching p = pg, the root of Eq. (16) (according to the discrepancy), can be started
from a certain guaranteed value p,.., < pq, which either is given a priori or is calculated by using, for
example, the estimate of [12]:

| 8 X ()
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n=1

If we assume p = 0 for the initial value, then, 'as can be shown,

FQO) =|firt—é7,
1
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{.‘f,’l?'( I, C vf,) (19)

We can avoid transformations of the matrix C, and construct a more economical and exact algorithm
for solving the above problem if we apply to (12) and (13) the transformations proposed in [13]. In this
case, instead of (12), (13), (17), (18) and (19) we have, respectively,
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Thus, in the calculation of the usual value of p, we solve the systems (12) and (18) or (20) and (21),
which differ only in their right~hand sides. For the purpose of economy of computational time we solve
the systems (20) and (21) by the pivotal method.

Note that for the coefficients o' and bkd , the following equations are satisfied:
O = W W= 0 DE= 00 BE=bL{X=0),

This allows us at once to calculate the m values of the coefficients ¢{ and the m values of the coef-
ficients bgn, which saves a good deal of machine time.

In conclusion it is our pleasant duty to thank E. M. Landis, V. A, Morozov, B. M. Pankratov, and
T, L. Perel'man for helpful discussions in the preparation of the article for press.

NOTATION
A is an operator or matrix;
B, C, D are matrices;
AT', pT are transposed matrices;
ct is the matrix inverse to C;
E is the unit matrix;
Em is an m-dimensional Euclidean space;
a is the thermal ~diffusivity coefficient;
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is the input data;

is the heat flux;

T, 0 are the temperature and the model temperature;
is a solution of the integral equation; -

is the coordinate of the moving boundary;

is a coordinate;

is a parameter of the regularization;

is the error in the input data;

ig the thermal-conductivity coefficient;

is the single-layer thermal-potential density;

is the time; '

T is the right-hand limiting value of the time interval;
Bl is the norm.
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