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H E A T - C O N D U C T I O N  P R O B L E M  
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We consider  control  schemes  for  the solution of a one-dimensional  inverse  hea t - con -  
duction p rob lem in a region with moving boundar ies .  We invest igate  the computat ional  
a spec t s  of the construct ion of effective a lgo r i thms .  

P r inc ip les  of Solution of the Inve r s e  P r o b l e m .  We consider  the genera l  formulat ion of a one -d imen-  
siorml inverse  p rob lem of type I for  a heat-conduct ion equation with constant coeff ic ients .  We seek  heat 
f luxes or  t e m p e r a t u r e s  on two moving boundar ies  of the body accord ing  to known temperatui-e  dependencies 
at two in te r io r  points .  The coordinates  of these  points can v a r y  in t i m e .  The i r  laws of motion X 2 (~) and 
X 3 (~) and a lso  the laws of motion of the external  boundar ies  X1 (T) and X 4 (~) a r e  known, and a r e  defined by 
continuous different ia l  functions.  Below, for  b rev i ty  of the d iscuss ion,  we will cons ider  mainly  the p r o b -  
l e m  of de termining  the heat  f luxes .  The solution of the s i m i l a r  p rob l em of the t e m p e r a t u r e s  on the s u r -  
faces  can be obtained (following the cons idera t ions  given below) in t e r m s  of the doub le - l aye r  t h e r m a l  
potent ia ls .  If  it is  requi red  to  es tab l i sh  s imul taneously  the heat f luxes and the t e m p e r a t u r e s  on the boun- 
da r i e s ,  then based on the heat f luxes that  have been obtained, solving the d i rec t  heat-conduct ion p rob lem,  
we can find the boundary t e m p e r a t u r e s .  Final ly,  we a s s u m e  the initial t e m p e r a t u r e  dis tr ibut ion to be 
equal to ze ro ,  which, however ,  does not l e a d t o  any loss  in genera l i ty  of the formulat ion of the p rob lem,  
since,  we can a lways f i r s t  reduce  the initial  condition to z e r o .  

Thus ,  we have the following problem:  
ao 030 

- a - - ,  X ~ ( ~ ) < x < X 4 ( ~ ) ,  "~>0, (1) 
Or ax ~ 

o (x, O) = O, 

oo (x l  (~), "~) 
- -L~  " Ox -- q1 (T), 

--•o O0 (X i ('r), "r) = q~ ('r), (2) 
Ox 

0 (X~ (% T) = f~ (~), 

where  f2(r), f(v) a r e  known functions, andql(T), q4(r) a r e  unknown functions.  
T 

As 0 we can use  the model  t e m p e r a t u r e ,  defined by the Kirchhoff  t r an s fo rma t ion  0 =!/X0 f ~ (T) dT.  
0 

We introduce into the d iscuss ion  the s ing le - l aye r  potent ia ls  for  the heat-conduct ion equation. Then 
the function e (x, ~) can be r ep re sen ted  in the f o r m  

"[ T 

= , ~* d 0 (x, ~) f ~, (~) K (x, x ,  (~); ~, ~) ~ + ~ ~,(~) K (x, x ,  (~); ~, ~) at, 
0 0 
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where vl, va are known functions,  and K(x, Xj(~); w, ~) = (1/2 ~ t ) e x p  [--, (x - -Xj(O)2/4a(~-~) ] .  

TaMng into account the jump conditions for the derivat ives  of the thermal potentials ,  we write e x -  
press ions  for determining the two heat f luxes: 

q l ( z )  = - # -  ' ' 2 / 2 T v,(~)V(X~(T), X~(~); ~, ~)d~ 
0 

0 

v~2 (z) @ ; vl (~) V (X 4 (~), Xl (~); % ~) d~ 
0 

T 

0 

where 

21" a .u ( ' c - -~ )  r 4 a ( z - - ~ )  " 

The densit ies  of the thermal  potentials should satisfy the following Volterra integral equation of the 
f irst  kind; 

L' 

Av _=. l /~  (T, ~) v (~) ~ = f (T), 
0 

where we have introduced the two-component  vector-funct ions 

v(~)= 1%(~) ] f(~)== I f2(~) ] ~', (i) ' f .  (~) j 

and the matrix  of the kernels  

t~(~, ~)= K(G(~), x~(~); ~, ~) K(G(T),  G(~); ~, ~) " 

(3) 

The present problem is incorrect (unstable against small perturbations in the right side); therefore, 
we must seek its solution on the basis of Tikhonov's regularization method [I]. 

We construct a regularization function in the form 

if) [v, a] = [] Av --  fli 2 -i a ]] v]! 2, (4) 
where 

Tnz "~ 

0 0 " 

TII ] T 

0 

0 ' 

TD~ 

; [,; 
0 
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The solution of the prob lem of the minimizat ion of the flmcttonal (4) with r e spec t  to  v~(T) and v4(7) 
can be reduced to  the solution of the two corresponding Eu le r  equations,  depending on the regular iza t ion  
p a r a m e t e r  a .  By appropr ia te  select ion of a ,  we can achieve stabili ty and the n e c e s s a r y  accuracy  of the 
solution.  Thus,  the genera l  methodology of regular iza t ton  of the inve r se  heat-conduct ion problem with 
two unknown boundary conditions does not differ  p r inc ipa l ly  f rom the case  of a single unknown condition 
[2,3]. However ,  in the computational plan, the problem becomes  m o r e  complex and labor ious  and we 
t h e r e f o r e  al~o consider  other  possible  approaches  to  i ts solution.  

If,  above, for  obtaining Eq.  (3) we considered the region D{XI(r) _< x __<_ X4(r), r > 0}, then we now 
consider  the two regions  D 1 {X 1 (T) _< x _< X 2 (7), ~ > 0} and D 2 {X 2 (~) _< x _< X 3 (~), �9 > 0} with the common 
boundary X2(r ), on which the following coupling conditions a re  satisfied: 

% (X~ (~), -~) = % (X~ (~), ~), 

a%, (x~ (r r _ % ,  (x~ (~), ~) 
Ox Ox 

Similar ly  we can consider  the regions D 2 and D 3 {X~(~) _< x _< X 4 (~), r > 0}, border ing  on the boundary 
X3 (r). 

The heat flux q2(r) is found f rom a solution of the d i rec t  heat-conduction problem in the region ]3 2. 
In this  ease  we can use  the double- layer  the rmal  potentials  [4]. In the presen t  ease,  applying the approxi -  
mation descr ibed  in [5] fo r  the integral  t e r m s  (in the sys tem of Vol te r ra  equations of the second kind, 
wri t ten for  the determinat ion of the densi t ies  of the potentials) ,  we succeed in reducing this  p rob lem to 
the success ive  solution, for  each step in t ime,  of a sys tem of two l inear  a lgebraic  equations.  As was shown 
by numer ica l  exper iments ,  such a method proves  to be v e ry  effect ive with r e spec t  to the accu racy  of the 
resu l t s  obtained and the expenditure of calculation t ime .  

It is n e c e s s a r y  to obtain the unknown densi t ies  v 1 and v2, corresponding to the boundaries  X 1 (r) and 
X2(T) of region D1 f rom the solution of the following sys tem of integral  equations: 

T 

~(~)K(x~(~), x~(~); ~, ~)d~+~(~)K(X~(~), Xo(~); ~, ~)d~--f2(~), (5) 
0 0 " " 

- -~-v~ (~) + ~ v~ (~) V (x 2 (~), Xo. (~)', r, ~,d~, ~- 
u 

T 

-1- fv~  (~) V (X 2 (x), X~ (~); % ~i d~ -- 2q~ (~) 
" ~'o (6) 

0 

Equation (5) is  an equation of the f i r s t  Mnd in vl and v2; however ,  it can be reduced to  an equation of 
the second kind in v2. 

Following the method of Ool 'mgren,  used in [6], we multiply both sides of Eq.  (5) by (z--~') 1/2, in te-  
gra te  over  ~ f rom 0 to z, r e v e r s e  the o rde r  of integrat ion in the in tegra ls  on the left  side, and, finally, 
d i f ferent ia te  the equation obtained with respec t  to  z with subsequent rep lacement  of z by T. Omitting all 
the  calculat ions re la ted  to these  t r ans fo rmat ions ,  we wri te  the final resu l t  

0 0 

(7) 
1 i ~ f~ (~) - -  f~ (~)dL 

= g ~  f~ (~) - 2 -  V ( ~ -  ~)~ 
0 

where  

1 / - - a -  f e x p [  - (X2(x)-Xl(~) )~  

(~ - -  z) 3/~ (z - -  ~)~/~ 

( X~(z)-X~(~) ) 1 
4a (z --~) J dz. 
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We note that  in the der ivat ion of (7) we have used the assumpt ion  of Holder  continuity of the function 
f2(T) with exponent (1 +~)/2 (0 < ~ _< 1). 

The ke rne l s  W 1 (~, r) have a weak s ingular i ty  of the fo rm [6] 
--1~,- - -  

ItV(~, T)I-<M(~--~) ~ , M>O, o < z < 1 ,  

which indicates  the exis tence  of the in teg ra l s  on the left  side of (7) and the poss ib i l i ty  of r ep re sen t i ng  them 
in f in i te -d i f fe rence  f o r m .  

T h u s ,  in the given formulat ion of the i nve r se  heat -conduct ion p rob l em it is n e c e s s a r y  to r egu la r i ze  
the p rob l em of the de te rmina t ion  of the single unknown densi ty vl(r).  

We exclude the mos t  typ ica l  (in p rac t i ce ,  the solutions of i nve r se  heat-conduct ion p r o b l e m s  with con-  
stant  coefficients)  case  in which the points with known t e m p e r a t u r e s  a r e  not displaced during heating, [ . e . ,  
X2(r) = const ,  X3(r) = const .  Then the p rob lem (5), (6) r educes  to  a solution of the in tegra l  equation 

o 
0 0 

2q 2 (~) , 1 f., (~) 1 ~ ~z (~) --1~ (T) 
dg. 

~o ' I .~a~ 2 ] / a a . )  V (T--~) ~ 
(8) 

0 

Equation (8) can be approx imated  in the f o r m  of the sum (taking account  of the s ingular i ty  of Wl(~, r))  
n 

Av, 5 ~  a PikinVll = F,z; n = I, 2, I T / ,  (9) 
i = 1  

where  the Pi a r e  the weighting f ac to r s ,  which depend on the quadrat ic  fo rmula  that  is  used .  

Regula r iza t ion  of (9) accord ing  to the Tikhonov method leads  to the equation 

(XA -i- aC) v 1 = A~F, 
where  C is  a pos i t ive-def in i te  s y m m e t r i c  ma t r ix ,  the f o r m  of which is  de te rmined  by the o rde r  of r e g u l a r -  
izat ion (see, e . g . ,  (14) and (15) below).  

The approach  cons idered  above is  equivalent  to the reduct ion of the i nve r se  p rob l em to a Cauchy p r o b -  
l em with conditions f2(r) and q2(r), ass igned  for  x = X2(v). A specif ic  s h o r t c o m i n g  of such a r e p r e s e n t a -  
t ion cons i s t s  of the need to f i r s t  ca lcula te  the heat  flux q2(r). If  the e r r o r s  in the initial  data f2(T) and f3(r) 
can usual ly  be a s s um ed  to be independent of each other ,  then, in the t rans i t ion  to the Cauchy p rob lem,  the 
e r r o r s  in the function q2(r), obtained f r o m  a solution of the d i rec t  heat-conduct ion p rob l em,  to a c o n s i d e r -  
able extent,  a r e  de te rmined  by the e r r o r s  in the ass ignment  of f2(~). "Synchronizat ion" of the e r r o r s  in 
f2 and q2 can worsen  the a c c u r a c y  of the solution of the i nve r se  heat -conduct ion p r o b l e m .  

We now d iscuss  a method of reducing the boundary t h e r m a l  r e g i m e s  ql (T) and q4(r) to the genera l  f o r -  
mulat ion (1), (2). It  i s  based  on two t r a n s f o r m a t i o n s ,  which enable us to fo rmula te ,  instead of (1), (2), a 
p r o b l e m  with fixed boundar ies  of the input data and fixed boundar ies  of the unknown funct ions.  The f i r s t  
t r a n s f o r m a t i o n  is  a convers ion  to the new input data 02(~) and 03(r)for  some s t ra ight  l ines  x 2 = const and 
x 3 = const ,  which a r e  obtained f r o m  a solution of the d i rec t  heat -conduct ion p rob l em in the region D 2. F o r  
def in i teness ,  we can a s s u m e ,  for  example ,  x 2 = X2max and x 3 = Xamin. If the input functions a r e  given at  
fixed points;  then na tu ra l ly  such a t r a n s f o r m a t i o n  is  not r equ i red .  The second t r a n s f o r m a t i o n  is the final 
convers ion  to the r ec t angu la r  reg ions  D~ { 0 _< x <_ x 2, r > 0} and D~ {x 3 _ x _< X4max, r > 0}, enclosing the  
reg ions  D~ and D 3 (D1 ~ D~, D 3 ~ D~). 

We now solve the i nve r se  p r o b l e m s  of the de te rmina t ion  of the f ic t i t ious t e m p e r a t u r e s  0f~ and 0f2, 
co r responding  to the boundar ies  x = 0 and x = X4max. This  can be done sufficiently eas i ly  in t e r m s  of the 
Duhamel  in tegra l  with the u s e  of the pr inc ip le  of superpos i t ion  of solut ions .  Fo r  example ,  for  Oft we have 
the in tegra l  equation 

T 

~on(~) d~ =~(~), (lO) 
0~ (x~:-x~, 

& 
0 . 

where  
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T 

g ('0 o~ (~)- ; o~ (~) o~ (x~,o~ v "  ~) d~; 
�9 0 

! ! 

,~(x, r - - i )  is  a solution of the f i r s t  bmmdary-value problem in the region D 1 U D 2 for  the condition of z e ro  
t e m p e r a t u r e  on One boundary and unity t e m p e r a t u r e  on the o ther .  

Thus,  .the considered t r ans fo rma t ion  of the initial formulat ion of the problem allowed us  to obtain 
a fundamental in tegral  equation (10) in a f o rm  such that i ts  solution is completely confined within the l imi ts  
of the regular iza t ion  schemes  constructed in [2, 3]. 

The las t  step in  determining the unknown conditions on the boundaries  Xl(r) and X4(T ) consis ts  of solving 
the d i rec t  heat-conduct ion p rob lems ,  respec t ive ly ,  in D l' and D3'. These  p rob lems  do not p resen t  any 
fundamental diff icul t ies .  The i r  method of solution can be based on the Duhamel pr inciple  or  on the theory  
of t he rma l  potent ia ls .  

The approaches  analyzed above for  the solution of the inverse  heat-conduction problem in a homo- 
geneous body can also be extended to mul t i layered bodies with thermal -conduct iv i ty  coeff icients  that a r e  
p iecewise-cons tant  over  the coordinate .  

S o m e  C o m p u t a t i o n a l  A s p e c t s  o f  t h e  R e g u l a r i z a t i o n  o f  t h e  

S o l u t i o n s  o f  t h e  I n v e r s e  P r o b l e m s  

In many cases ,  with the use  of regular iza t ion  schemes  for  solution of the inverse  heat-conduction 
p rob lems ,  it  becomes  n e c e s s a r y  to  complete ly  automate the p ro ce s s  of select ing reasonable ,  i . e . ,  optimal 
in a cer ta in  sense,  approximations to  the unknown boundary functions (selection of the regular iza t ion  p a r a -  
me te r ) .  The determinat ion of the approximations f rom the condition of internal  convergence of the r e g u l a r -  
ization solutions ( the quas iop t ima l -pa ramete r  method [7]) usually r equ i r e s  a qualitative analysis  of the ob-  
tained r e su l t s .  In the presen t  case  we use  cer ta in  a p r io r i  information on the expected solution and the 
assumed cha rac t e r  of the exact input function. F u r t h e r m o r e ,  as was noted in [3, 8], it is advisable to 
use  the quas iop t ima l -pa ramete r  method in combination with other  methods for  determining the optimal 
approximat ions .  All of this  significantly h inders  the automation of the p roces s  being cons idered .  At the 
same t ime ,  the c r i t e r i a  for  select ing the regular iza t ion  p a r a m e t e r ,  which a re  based onV. A. Morozov 's  
d i sc repancy  pr inciple  [9, 10], allow us to  construct  an automatic  search  of the best  approximat ions .  

An effect ive a lgor i thm for  solving the given problem was proposed in [11]. We consider  i ts  appl ica-  
tion to the solution of inverse  heat-conduction problems  in the formulat ion of [2]. It is requi red  to find an 
m-component  vec tor  u (heat flux, t empe ra tu r e ,  or  density of the the rma l  potential on the boundary of the 
body) f r om a solution of the following sys tem of a lgebra ic  equations with lower t r i angula r  matr ix :  

m 

A t t ~  n q~u i = [ ~ ,  n ~ - 1 ,  2, . , m. (11) 
i = 1  

The coefficients  r  a re  de termined  as a function of the inverse  p rob lem being solved (for a semi in -  
finite body and for  a plate they a re  given in [3] ). 

In agreement  with the regular iza t ion  d iscrepancy  pr inciple  for  the condit ion of obtaining the unknown 
solution with minimum Euclidean norm of the f i r s t  d i f ferences ,  the problem (11) reduces  to the solution of 
the p a r a m e t r i c  sys tem of l inear  a lgebra ic  equations 

(/3 -:- aC) u = g (12) 

jointly with the condition for  the select ion of 

where  
n = l  i= l  

(13) 

r n  

�9 n n ~  B =(b~ = ~ k ~ , ] ,  l = 1, 2 . . . . . . .  m, k = 1, 2 . . . . .  m; ~ is the regular iza t ion  p a r am e te r ;  
n ~ l  �9 
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- -  1 - - 1  

--1 2 - -1  

C =  

--1 2 - - I  
- - 1  1 

m 

m.  

g ,  = .~.~'Tf,,- ~ q  ( c, = u '  (0)); 
t i l l  

g,~ = ~,~fm - -  ac~ (q = u' (~m)). (14) 

If  we f o r m u l a t e  a p r o b l e m  about  the  m i n i m i z a t i o n  of the  n o r m  of the  second d i f f e r ences ,  then fo r  the  
na tu r a l  boundary  condi t ions  u "  (0) = u "  (rm) = u ' "  (0) = u " '  (~m) we have 

- -  1 

- -2  

1 

C =  

- -2  1 
5 - - 4  1 

- -4  6 - - 4  1 

1 - - 4  6 - - 4  1 

1 - - 4  5 - - 2  

1 - - 2  ] 

(15) 

In [11] it was  shown that  if  we r e p l a c e  the  d i s c r e p a n c y  equation IIAuc~--fll E = 6 by the equat ion 
m 

IlAucz--f l lSE_ = 6 s, s >- -1 ,  and we c o n s i d e r  the  l a t t e r  with r e s p e c t  to  p = 1/~,  tlien fo r  i ts  solut ion we 
can  apply  Net~ton 's  method  of t angen t s  (owing to  the  convexi ty  f r o m  be low of the  funct ions  pS(1/p) = IIAul/p 
- - f  I[SEm ). F u r t h e r m o r e ,  we d e t e r m i n e  that  a high r a t e  of c o n v e r g e n c e  fo r  the  p r o c e s s  of s e a r c h i n g  fo r  

the roo t s  ex i s t s  fo r  s = - -1 .  

Thus ,  ins tead  of (13), below, we will  so lve  the equat ion 
ttz tz 

o. 
n ~ I  t ' = l  

We c o n s t r u c t  an i t e ra t iona l  sequence  based  on the equat ion 

P (p,,) 
P7~+1 =- Pn 

F '  (p,,~ 

where  

F '  ( p ) -  p~l;p2 = :=, < = l  

Having d i f fe ren t ia ted  (12), we obtain a s y s t e m  fo r  the  d e t e r m i n a t i o n  of d u i l / p / d a  

( ' ' ) B - :  C du~,,~ = b. 
p d~ 

The co lumn v e c t o r  b f o r  the  m a t r i x  C, d e t e r m i n e d  by (14), has  the  f o r m  

b I ~ - -  C 1 - - / 2 1  - ~ - / 2 2 ,  

b~ = uh_l - -  2u7~ + uh+l, k = 2, 3 . . . . .  m - -  1, 

b,~ = - -  q~ -~ -  U,,,.-I - -  u,~. 

If  the  s tab i l i z ing  t e r m  in Eq .  (12) c o r r e s p o n d s  to  the  m a t r i x  (15), then 

(17) 

(18) 
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bl = ul -I- 2u= - -  ua, 

b~ = 2u 1 - -  5u~ -~ 4u 3 - -  u~, 

bh ~ - -  uh_~ + ,4Uh_l - -  6Uh -}- 4uh+l - -  uh.~, k = 3, 4 . . . . .  m - -  2, 

bin_ 1 : .-- Ura_a -1- 4urn_ 2 - -  5urn_ 1 + 2uin, 

b m = --Urn_ e @ 5)Urn_ 1 - -  Urn. 

The p r o c e s s  of approaching p = Pd, the root  of Eq.  (16) (according to the d i sc repancy) ,  can be s ta r ted  
f r o m  a ce r ta in  guaranteed value Pmin < Pd, which e i ther  is  given a p r io r i  or  is  calculated by using,  for  
example ,  the es t ima te  of [12]: 

tz=l 

I f  we a s s u m e  p = 0 fo r  the init ial  value,  then, a s  can be shown, 

F(0) = 1l f iI-1 =-6-1, 
1 

F'  (0 = -I)lip (A,f' C-1A;7)" (19) 

W e  can avoid t r a n s f o r m a t i o n s  of the m a t r i x  C, and cons t ruc t  a m o r e  economical  and exact  a lgor i thm 
for  solving the above  p rob lem if we apply to (12) and (13) the t r a n s f o r m a t i o n s  proposed  in [13]. In th is  
case ,  instead of ( 1 2 ) ,  ( 1 3 ) ,  ( 1 7 ) ,  (18)  a n d  (19)  we have, r e spec t ive ly ,  

(DTD'@ 1 E )  u~,/p=D*g, ] 

Pl/r, [1 D u l / p - -  g II E,n, } 
dul/P I I 

4' p" '1 

) , �9 dp - - - -Ul /P '  I 
| 

1 It D~gllem. ] 

(20) 

(21) 

Thus ,  in the calculat ion of the  usual  value of p, we solve the s y s t e m s  (12) and (18) or  (20) and (21), 
which dif fer  only in the i r  r ight -hand s ides .  Fo r  the purpose  of economy of computat ional  t ime  we solve 
the s y s t e m s  (20) and (21) by the pivotal  method.  

Note that  for  the coeff ic ients  ~n and b ~ ,  the following equations a r e  sat isf ied:  

n = ~,,~ . q/~ (pi b m r m-,,+,, , = n, b~ = ,,,-k+,, b~ = b~ ( x = o ) .  

This  al lows us  at once to  calcula te  the m values  of the coeff ic ients  g0t rn and the r eva lue s  of the coe f -  
f ic ients  b~ n, which s aves  a good deal of machine  t i m e .  

In conclusion it is  our  p leasant  duty to thank E .  M. Landis ,  V. A. Morozov,  B.  M. Pankra tov ,  and 
T .  L.  P e r e l ' m a n  fo r  helpful d i scuss ions  in the p repa ra t ion  of the a r t i c l e  for  p r e s s .  

A 
B, C, D 
A T, DT 
C-I 

E 

E m 

NOTATION 

i s  an ope ra to r  or  mat r ix ;  
a r e  m a t r i c e s ;  
a r e  t r ansposed  m a t r i c e s ;  
i s  the m a t r i x  i nve r s e  to  C; 
i s the unit ma t r ix ;  
i s  an m-d imens iona l  Euel idean space;  
i s  the the rma l -d i f fus iv i ty  coefficient;  
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T , 0  
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X 
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5 
X 
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rm 
II. II 

is  the input data; 
i s the heat flux; 
a r e  the t e m p e r a t u r e  and the model t empera tu re ;  
is  a solution of the in tegral  equation; 
is  the coordinate  of the moving boundary; 
~s a coordinate;  
i s  a p a r a m e t e r  of the regular iza t ion;  
is  the e r r o r  in the input data; 
~s the thermal -conduct iv i ty  coefficient;  
~s the s ing le - layer  the rmal -po ten t ia l  density; 
is the t ime;  
is  the r ight-hand l imit ing value of the t ime interval ;  
is the no rm.  
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